Comparative Analysis of Innovative PV Microgrids in Paris and Nice, France

Dr. Aung Ze Ya^{1*}

ABSTRACT:

This present research addresses the mix of the two innovative ideas: the focus on the DC loads for avoiding the conventional conversion losses in the building and the comparative analysis between the innovative Grid-connected PV Microgrid models in two different French Cities, Paris and Nice. The DC load profile of the Office and the proposed models can also demonstrate the enhancement of the sustainability by saving the Energy Consumption and Energy Charges as well as the reduction of GHG Emissions. The modeling and simulation are performed in HOMER Pro (Version 3.6.2). The techno-economic results of the optimistic models are beneficial for the planning and the implementation of PV Microgrid projects at the buildings in nowadays Green Revolution.

Key Words: PV Microgrid models, Paris, Nice, HOMER Pro, DC Office

1. Introduction

1.1 PV Applications

If the 19th century was the age of coal and the 20th of oil, the 21st will be the age of the sun. Solar energy is set to play an ever-increasing role in generating the form, and affecting the appearance and construction, of buildings. The principal reason for this is that photovoltaic (PV) systems which produce electricity directly from solar radiation are becoming more widespread as their advantages become apparent and as costs fall [7]. PV systems have been in operation in France since the 1980s. There are three definitions of PV in France [2]:

• Grid-connected distributed PV power system: electricity-producing system applied to residential, tertiary, commercial, industrial and agricultural buildings, or simply installed in the built environment (power range: kW to MW).

• Grid-connected centralized PV power system: ground-mounted production system that supplies bulk power electric energy (power over 1 MW).

• Off-grid PV power system: system installed to provide power mainly to a household or village not connected to the utility grid. Can also provide power to a variety of industrial and agricultural applications such as telecommunication relays, water pumping, safety and protection devices, etc. (power range: kW to several hundred kW).

French Electric Utility, EDF (Electricity of France) specializes in electricity, from engineering to distribution. Its electricity network is composed of RTE (Transport System of Electricity) and ErDF (Electricity Network Distribution) [5].

^{| *} This research work was performed during the ERASMUS MUNDUS Action 2 Scholarship: Post-

Doctorate Research Fellowship Program at University of Nice-Sophia Antipolis in Nice- FRANCE;

¹ Department of Electrical Power Engineering, Mandalay Technological University, Mandalay-MYANMAR

Table 1 mentions the cumulative installed PV power in three sub-markets during 2005-2014 (MW) in France [2]. It is evident that the capacity of the Grid-connected distributed application is larger than Grid-connected centralized ground-mounted and Off-grid. Therefore, PV Microgrid models for Grid-connected distributed application are proposed at the Section 2 of the present research.

Application	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Off-grid	20	21.5	22.5	22.9	29.2	29.3	29.4	29.6	29.7	29.75
Grid-connected centralized ground-mounted	0	0	0	7	42	242	702	1022	1342	1680
Grid-connected distributed	5.9	15.3	49	83	299	936	2236	3035	3367	3968
Grid-connected sub-total	5.9	15.3	49	90	341	1178	2938	4057	4709	5648
Total (MW)	25.9	36.8	71.5	11.3	370	1207	2967	4087	4739	5678

Table 1. Cumulative installed PV power in three sub-markets, 2005-2014 (MW)

Source: SOeS, previous IEA NSR reports for France. A few figures from previous IEA NSR reports have been reviewed to take into account the latest adjustments from SOeS, PV Atlas Observ'ER and ADEME.

1.2 Energy Efficiency and its Challenge

UN 2030 Agenda adopts a set of 17 Sustainable Development Goals (SDGs). Goal 7 is ensure access to affordable, reliable, sustainable, and modern energy for all. In it, 7.2 is to increase substantially the share of Renewable Energy in the global energy mix and 7.3 is to double the global rate of improvement in Energy Efficiency by 2030 [3]. The directive 2012/27/EU on Energy Efficiency (EED) establishes a common framework of measures for the promotion of Energy Efficiency. This contributes to reaching the 20% target on EU Energy Efficiency by 2020 and paves the way for further improvements beyond that date. France has set itself two objectives, pursuant to article 3 of Directive 2012/27/EU on Energy Efficiency (EED), to reduce its final energy consumption to 131.4 Mtep (Million-Ton Equivalent of Petroleum) and its primary energy consumption to 236.3 Mtep in 2020. The building sector, representing 44.5% of France's final energy consumption in 2012, constitutes a major challenge for Energy Efficiency policies [4].

One of the roots of the power losses in the buildings is the unharmonious systems between the power supply and applications. The building power supply is the conventional AC system. However, DC is the essential power usage for nowadays electronics appliances (TV, computer, etc) as well as LED. That aspect is significant in the battery based digital appliances of Globalization age such as laptop, tablet, mobile phone, electric shaver, etc. Thus, it is essentially needed to use the AC to DC converters for each appliance. As a undesirable result, there are converter power losses for every appliance. Then, the total hidden power losses per year for the whole building may be certainly large. Then, the combined power losses per year for the whole City and the whole country are obviously larger.

Photovoltaic (PV) is the most commonly use in building. However, PV's inherent output DC is needed to convert AC for the conventional building supply. Again, AC is

converted to DC for use in demand side. Then, there are step-by-step multistage converter losses from the PV supply side to the DC demand side as illustrated in Fig. 1. For more clear view, the other portions (Grid, metering and protections) are omitted in that Fig. The characteristics of the various types of loads with respect to AC to DC conversion is studied in [6] as the conversion efficiencies are lower (20 %) for lower power devices and higher for high power devices.

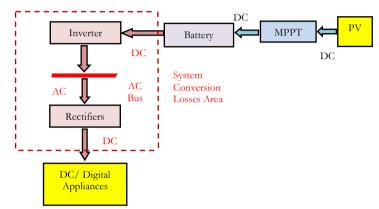


Fig.1 Conversion Losses Area of Conventional AC Bus and PV Systems

2. Proposed PV Microgrid Models in HOMER Pro 2.1 Proposed Grid-connected PV Model

For both Cities, the same Grid-connected PV Microgrids are modeled in the HOMER Pro (Version 3.6.2) as depicted in Fig. 2. The hybrid coupled AC-DC bus architecture of the conventional system and the proposed system is the same. However, the innovative idea of the proposed system is the considered DC loads are directly supplied from the DC bus to avoid the AC-DC conversion losses for each load.

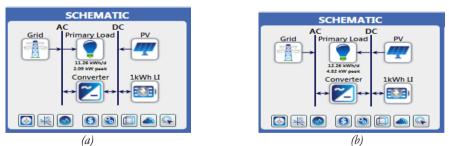


Fig.2 Grid-connected PV Model in HOMER Pro: (a) Conventional System; (b) Proposed System

2.2 Two Locations and Solar PV Potentials

GHI is the most important parameter for calculation of PV electricity yield. GHI is the sum of Direct Horizontal Irradiation (DHI) and Diffuse Horizontal Irradiation (DIF) [9]. As highlighted in Fig. 3. GHI of French southern part is obviously larger than French northern part.

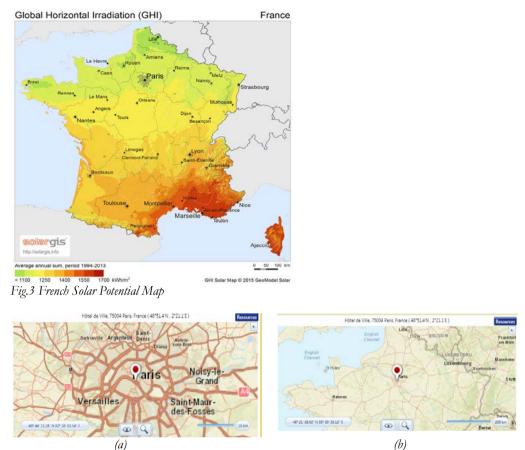


Fig.4 Location of Paris City in HOMER Pro: (a) By Region; (b) By State

The proposed two models are considered at the Paris and Nice Cities to know the different technological design aspects, ecological factors as well as economic results that impacted from different locations and PV radiations. Time is set as (UTC+01:00) Brussels, Copenhagen, Madrid, Paris. The maps of Paris and Nice Cities in HOMER Pro platform are reported in Fig. 4 and Fig. 5.

Fig.5 Location of Nice City in HOMER Pro: (a) By Region; (b) By State

Solar GHI data of Paris and Nice in 2015 are exported from [10]. Based on that data, it is observed that Solar GHI of Nice is higher than Solar GHI of Paris corresponding with the Fig. 3. Then, these data are inputted into HOMER Pro. The Scaled Annual Average of Paris and Nice are 3.44 kWh/m²/day and 4.55 kWh/m²/day respectively. Solar GHIs and Hourly Global Solar in HOMER Pro for both Cities are shown in Fig. 6 and Fig. 7.

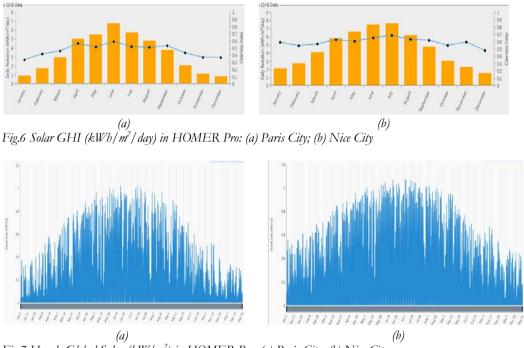
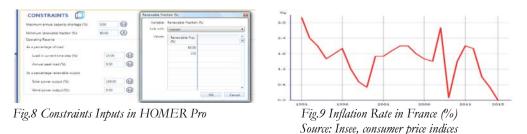



Fig.7 Hourly Global Solar (kW/m²) in HOMER Pro: (a) Paris City; (b) Nice City

2.3 Modeling Parameters of the Project (A) Economics and Constraints

France is 100 % electrified with reliable power system. Therefore, Maximum annual capacity shortage is set as 0 %. In this study, Solar is only modeled. Then, in the percentage of renewable output, Solar power output is inputted as 100 %. Renewable Fraction is inputted as 80% and 100% for Sensitivity Values as shown in Fig. 8.

Nominal discount rate is 0.75 [11]. Expected inflation rate is 0 as highlighted in Fig. 9 [12]. The project lifetime is 20 years [13]. France is the member state country of EU. Then, Currency is set as Euro (e) in HOMER Pro supportive tool.

(B) Grid Parameters

There are three options for electricity tariffs in France: Base, Heures Creuses and Tempo [14, 15]. If your water and space heating is not electric then you would be best to choose the Base tariff (0.1372 ϵ/kWh), which has the same rate throughout the day and year.

If you have a night-storage electric water heater, or storage radiators, then you would be best advised to choose Heures Creuses option $(0.151 \notin kWh)$, which provides off peak electricity rates (0.1044 $\notin kWh$) to heat your appliances. EDF also offer Tempo with charges that vary according to the time of year and of day. [14].

In this study, the water and space heating are not included in the load profile. Therefore, tariff (Grid Power Price) is $0.1372 \notin$ /kWh [15] and Feed-in-tariff is $0.1327 \notin$ /kWh [8]. In addition, Grid Emissions are set as: Carbon Dioxide 79 g/kWh, Sulphur Dioxide 0.05 g/kWh and Nitrogen Oxide 0.07 g/kWh [16, 17, 18].

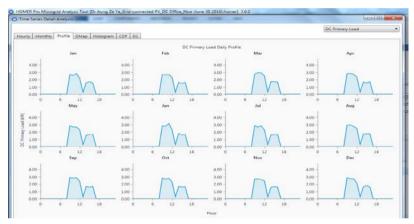
(C) Components of PV Power System

In France, 90 % of installed PV modules are based on crystalline silicon and 10 % are thin films (essentially cadmium telluride for ground-mounted power plants) [2]. Therefore, the mono-crystalline type module is selected. Its specifications are 20.3 % efficiency, Temperature coefficient 0.0013963/°C and NOCT (Normal Operating Cell Temperature) $45\pm2^{\circ}$ C. That NOCT is also the Sensitivity values.

The cost inputs of the PV for 1kW are Capital cost $1100 \notin$, Replacement cost 0 and Operation & Maintenance cost 70 \notin . The considered sizes (kW) for PV are 1, 5, 10, 15, 20, 25, 30 and 35.

The maximum power point tracking (MPPT) converter continuously changes the operating point due to changes in solar irradiance, load ,and tracks the maximum power point. In this study, its inputs for 1kW are set as: Capital cost $500 \notin$, Replacement cost $450 \notin$ and Operation & Maintenance cost $45 \notin$. The search space for MPPT is 1, 5, 10, 12, 15 and 20.

The Bi-directional Converter is inputted as 1.5 kW for Capital cost $600 \notin$, Replacement cost $500 \notin$ and Operation & Maintenance cost $70 \notin$. The considered sizes (kW) are 1.5, 3, 6, 9, 12, 15 and 20. Its lifetime is 15 years, the inverter efficiency is 90 % and the rectifier efficiency is 85 %.


The battery is set as 1kWh Lithium-ion battery. Its costs are Capital cost $600 \in$, Replacement cost $500 \in$ and Operation & Maintenance cost $100 \in$. The considered sizes (kW) for battery are 1, 3, 5, 7, 9 and 10. Its specifications are 6 V, 166.667 Ah capacity, 90% roundtrip efficiency, Maximum charge current 166.667 A, Maximum Discharge current 500 A, lifetime 15 years and throughput is 3000 kWh.

2.4 DC Load Profile and Savings

In this study, the target of the considered loads is towards the least conversion losses. Then, the loads are selected for inherently DC as desktop computers (PCs), laptops, printers, LED lights, Security System and Wi-fi Routers. Thus, the tentative building is regarded as the Office. The DC loads and profile that set into HOMER Pro is reflected in Fig. 10 and Fig. 11.

0		DESIGN		512 -
Name Prin	any Load Daily Profile	Remove	Sestonal Profile	
	CONTRACTOR DESIGNATION	TANKA MANYA ANA ANA AMIN'NA TANA	CONTRACTOR CONTRACTOR	-2.

Fig.10 DC Primary Load Inputs in HOMER Pro

Fig.11 DC Primary Load Profile in HOMER Pro

Computers and related equipments as well as rechargeable electronics equipments can be saved 20 % power by avoiding AC-DC conversion process. In addition, the LED lighting can save 20% and the security system can save 17% conversion losses [6]. Then, the DC loads and saving matrix that including the Energy Saving, Electricity Charges Saving and Greenhouse Gas Emissions Reduction that will be outcome from avoiding AC-DC Conversion Losses is listed in Table 2.

	34118 114414			
Load	Energy	Energy	Energy	Electricity
	Saving	Saving	Saving	Charges Saving
	(kWh/day)	(kWh/week)	(kWh/yr)	(€/yr)
PCs	1.554	7.770	388.500	53.302
Laptops	1.328	6.640	332.000	45.550
LED Lightings	0.350	1.750	87.500	12.005
Security System	0.387	1.935	96.750	13.303
& Wi-fi Routers				
Total	3.619	18.095	904.750	124.160

Table 2. Loads and Saving Matrix

3. Simulative Results and Comparative Analysis

After finishing the simulation in HOMER Pro (Version 3.6.2), the optimum PV Microgrid models for DC Office in Paris and Nice Cities are displayed. There are observed that the same results as well as the different results. The results are comparatively analyzed as the following sub-section headings.

3.1 Tabular Results

u.		_				COM	PONENTS	RESOURCES	PROJECT	SYSTE	м не	LP							
10	-	>	esign (Results View	Library De	aicet beau	CH2 Defer	rable Thermal	1 Thermal #2	Hydrogen									Calcul
												RESULTS	i.						
6																		🛞 Tabul	lar 🔿 Graphic
1	Ixpo	t.,		Column	Choices				Sensiti	vity Cases	: Left Olic	k on a sensitivity ca	se to see its Optin	nization Resu	lts.				Export AR
						luchitecture						Cost		System	P	v		1kWb U	Co
-		1	R	PV (kW)	PV-MPPT V	1kWh LI 🛛	Grid V	Converter V	Dispatch V	COE 7	NPC 7	Operating cost V	Initial capital 🛛	Ren Frac V	Capital Cost 🛛	Production V (kWh)	Autonomy V	Annual Throughput V	Rectifier Mea (KW
4		1	F	10.0	10.0	1.	999,999	10.0	cc	€0.178	639,517	€1,022	€20,600	88	16,000	11,608	1.6	0.00001	0.1
4	E	1	P	10.0	10.0	1	999,999	10.0	cc	€0.178	€39,516	€1,022	€20,600	88	16,000	11,608	1.6	0.00001	01
4	1	1	E	10.0	10.0	1	999,999	10.0	cc	60178	69,516	¢1,022	€20,600	88	16,000	11,608	1.6	0.00001	01
6																			
1	ixpo	1						Opt	timization Ca	ses: Left D	ouble Cli	ck on a particular sy	stem to see its de	etailed Simula	ation Results.			Categor	rized • Overs
					A	vchitecture						Cost		System	P	/		1xwh U	
-	-	1	R	PV (kW) V	PV-MPPT (kW)	1kWh Ll 🏆	Grid (kW)	Converter V	Dispatch ∇	COE 7	NPC Y	Operating cost V	Initial capital V	Ren Frac V	Capital Cost V	Production V (kWh)	Autonomy V	Annual Throughput V (kWh)	Rectifier Mee (kW
4		1	R	10.0	10.0	1	999,999	10.0	LF	€0.178	€39,517	€1,022	€20,600	88	16,000	11,608	1.6	0.00001	0.1
4	-	1	Z	10.0	10.0	1	999.999	10.0	cc	€0.178	€39,517	€1.022	€20,600	88	15,000	11,608	1.6	0.00001	0.1
-	-	1	Z	10.0	10.0	1	999,999	15.0	UF	€0.209	646,368	€1,284	€22,600	88	16.000	11,608	1.6	0.00001	0.5
4	-	1	R	10.0	10.0	1	999,999	15.0	cc	€0.209	646,368	€1,284	€22,600	88	16,000	11,608	1.6	0.00001	0.1
-	-	1	E	10.0	20.0	1	999,999	10.0	LF	60.244	€54,264	€1,550	€25,600	68	21,000	11,608	1.6	0.00001	0.1
4	-	1	E	10.0	20.0	1	999,999	10:0	cc	€0.244	€54,284	€1,550	€25,600	88	21,000	11,608	1.6	0.00001	0.1
-		1	Z	30.0	10.0	1	999.999	10.0	UF	€0.130	656,234	€735.66	642,500	97	38,000	24,891	1.6	0.000007	0.08
-	•	1	Z	30.0	10.0	1	999,999	10.0	cc	€0.130	€56,234	€736.66	642,600	97	38,000	24,891	1.6	0.000007	0.08
	10	-	E		20.0	1	999 999		UF.	€0.105		€539.97	649.500	97	43.000	33.784	16	0.000007	0.08

Fig. 12 Simulated Tabular Results of Sensitivity and Optimization Cases for Paris City

		Ŵ	1	X	î (-	POMENTS		PRDJECT	SYSTE	M HELP									
Home		Desig		esuits U New	brary Eco	nomics System	m Control - C	onstraints Emissi	oni Optimiz	ation		RESULTS								Calcu
0																			· Tabul	ar 🔿 Graph
-Exp	ort.		Co	lumn Cho	ices_				Sensiti	ivity Cases	: Left Click on a se	nsitivity case to s	ee its Optin	nization Resu	ats.					Export AlL
					Archite	rcture					Cost		System		PV		1kWh U			Converter
2		w s		MPPT 😵	18996 LI *	Grid V	Corverter (KW)	Y Dispatch V	COE V	NPC V (0)	Operating cost 💡	Initial capital V	Ren Frac (%)	Capital Ci	ost V Producti (kWh)	n 🖞 Autonom	Annual T	hroughput 🍾 Wh)	Rectifier N	Aean Outpu KW)
P	1	3.0	10.0	0	1	999,999	10.0	LF	€0.115	€33,106	€675.72	€20,600	94	16,000	15,877	11	0.000009		0.09	
P	1	0.0	10.0	0	1	999,999	10.0	UF	€0.115	€33,105	£675.69	€20,600	94	16,000	15,877	1.5	0.000009		0.09	
P	1	0.0	10.0	0	1	999.999	10.0	UF	€0.115	€33,105	6 675.66	€20,600	94	16,000	15,878	1.1	0.000009		0.09	
1																				
Бф	iort.							Optie	nization Ca	ses: Left (ouble Click on a p	articular system	to see its de	tailed Simuli	ation Results.				Categor	ized 🖲 Ov
					A	chilecture					c	ost		System		v		1kWh LI		
-	-	1		V V PV	WPFT V	1kWh LI 🏆	Grid (kW)	Converter 😵 ((kW)	Dispatch 😵	COE V	NPC V Operation	ng cost 🏆 Initial	P lateo	Ren Frac V	Capital Cost 💡	Production V	Autonomy V	Annual Throu (kWh)	ghput 🍾	Rectifier M
W 1		1.8	5 10	0 10	0	1	999,999	10.0 1	J	60.115	€33,106 €675.72	620,6	00	94	16,000	15,877	11	0.000009		0.09
T 1	63	ŧ.	10	0 10	0	1	999,999	10.0	CC D	€0:115	€33,107 €675.75	€20,6	00	94	16,000	15,877	11	0.000009		0.09
۳.	5	1.6	30	0 20	ð.	1	999,999	15.0 1	F	€0.0488	€36,769 -€693.2	7 649,6	00	99	43,000	45,386	11	0.000004		0.04
**		1 8	30	0 20	0	1	999,999	15.0 1	oc.	€0.0488	€36,769 -€693.2	4 649,6	00	99	43,000	45,386	11	0.000004		0.04
7 1		1 8	10			1	999.999		F	€0.138	€39,958 €937.86	622.6	00	94	16,000	15.877	11	0.000009		0.09
		t F	10	0 10	0	1	999,999	15.0	00	€0.138	€39,958 €937.89	622,6	00	94	16,000	15,877	11	0.000009		0.09
		0.00	30			1	999.999	10.0 1	3	€0.0874	€46,275 €198.54	642,6	00	98	38,000	30,744	11	0.000004		0.04
		0.2	30			1	999,999		00		€46,275 €198.57	642,6		98	38,000	30,744	11	0.000004		0.04
7	23	1.5	30	0 20	0	1	999,999	10.0	5	€0.0751	€47,238 -€19.54	647,6	00	99	43,000	45,385	11	0.000004		0.04

Fig. 13 Simulated Tabular Results of Sensitivity and Optimization Cases for Nice City

Fig. 12 and Fig. 13 demonstrate the tabular results of HOMER Pro for Paris and Nice Cities. The upper part is mentioned for Sensitivity Cases and the lower part is displayed for Optimization Cases. The displayed results are listed for PV Microgrid models from top to bottom of the optimistic to least cost-effective. The results are categorized with the column headings as the architecture, cost, system, PV, Battery, Converter and Grid. There are no different results on architecture and Initial Capital Cost (20600 €) for both Cities because of the same inputs that mentioned in Section 2.

3.2. Renewable Fraction

The difference on Renewable Fraction results is predicted as 88 % for Paris City and 94 % for Nice City. It is notable that these different results are due to the different locations and Solar PV potentials. The different results of the two Cities are more obvious in the Graphical Optimization Surface Plots of HOMER Pro Microgrid Analysis tool as reflected in Fig. 14 and Fig. 15.

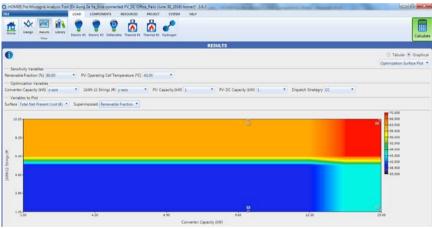


Fig. 14 Simulated Results of Optimization Surface Plot for Paris City

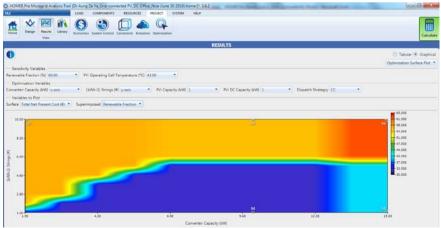


Fig. 15 Simulated Results of Optimization Surface Plot for Nice City

3.3 Grid Results

The monthly scenarios of the Grid are highlighted in Fig. 16 and Fig. 17. From those Figs, it can be easily observed that the figures of monthly Energy Purchased (kWh) for Paris City are greater than the figures of Nice City. On the other hand, the figures of Energy Sold (kWh) and Net Energy Purchased (kWh) of the Nice City are greater than the figures of the Paris City. However, Total Net Present Cost (NPC), Levelized Cost of Energy (COE) and Operating Cost of Paris City are expensive with respect to the Costs of Nice City.

View							RESULT	5		
nulation Results										
ystem Architecture:	Generic flat plate PV (1) Generic 1kWh Li-Ion (1 System Converter (10 k	strings) l	3rid (999999 k .oad Following					Total NPC: Levelized C Operating		€39,516.56 €0.1775 €1,022.07
ost Summary Cash Flow	Electrical Renewable	Penetration			eric flat plate	e PV Grid S	ystem Conv	erter Emis	sions	
			Rate Sche	dule: All		-				
	Month	Energy Purchased (kWh)	Energy Sold (kWh)	Net Energy Purchased (kWh)	Peak Demand (kW)	Energy Charge (€)	Demand Charge (€)			
	January	236	247	+11	5	-€0.5	€0			
	February	153	421	-268	4	(€34.97)	€0	-		
	March	133	627	-495	3	(€65.22)	€0			
	April	33	866	-834	2	(€110.73)	€0			
	May	55	877	-822	3	(€109.09)	€0			
	June	29	1,063	-1,034	3	(€137.41)	€0			
	July	39	913 791	-875	2	(€116.17)	€0			
	August	86	791 732	-706	4	(€93.51) (€88.14)	€0 €0			
	Septembe	08	102	-003	- 4	(400-74)	40	-		

Fig. 16 Grid Results of PV Microgrid Project for Paris City

		-0-	LOAD CON	PONENTS	RESOURCES	PROJECT	SYSTEM	HELP				
toma Design	Results	Library e	Comornics System	m Control Co	nstraints Emiss	sions Optimiza	tion					
									RESULT	s		
imulation Result	5											1
	1000	Generic flat	plate PV (10)	w/10 kwp (Srid (9999999 k	wo.				Total I	NPC:	€33,106.2
System Architect	(U)181		Wh Li-lon (1 st		oad Following					Levelia	zed COE:	€0.114
			nverter (10 kW		and a shoring	2				Opera	ting Cost:	€675.7
Cost Summary	Cach Elow	Electrical	Renewable P	anatration	Generic 1kWh	Liston Gen	aric flat elata	PV Grid S	uitem Conu	arter	Emissions	
cost summary	Cash From	erection	THE TRACKET	energinere .		-			ystern cont		Child States	
					Rate Scheo	dule: Mi	1	•				
			and the second	Energy	Energy	Net Energy		Energy	Demand	*		
			Month	Purchased (kWh)	Sold (kWh)	Purchased (kWh)	Demand (kW)	Charge (€)	Charge (€	5		
			January	116	682	-566	4	(€74.78)	€0			
			February	98	581	-483	4	(€63.81)	60	_		
			March	80	746	-666	3	(€88.20)	€0			
			April	35	900	-865	з	(€114.88)	€0			
			May	32	973	-941	2	(€125.08)	EO			
			June	28	1.074	-1,046	3	(€139.05)	€0	-		
			July	17	1,182	-1,165	2	(€154.89)	€0			
			August	39	937	-898	3	(€119.22)	€O			
			September	60	802	~741	4	(€98.36)	€0	*		
		Energy Pu	rchased from	Grid		F 00 01-			Energy	Sold to	o Grid	10.00
[*] ۱						-5.00 24						-10.00
8- NIN AA107 11					BUILDING BUILDING	-4.00 18-	a and in the	THE PROPERTY OF	100.00		State of the local day of	- 0.00
2-	W M			1. C 110 1	LIN OF LUNC	-3.00		No. In second	a weather	the p	and again the state	6.00
A REPORT OF	Ratio			11.10.11		-2.00	CONTACT NO.	IN CALCESIS		2710	THE PROPERTY AND	4.00
6-						-1.00 6"						- 2.00
- 1						0.00 0-						0.00

Fig. 17 Grid Results of PV Microgrid Project for Nice City

3.4 Electrical and Emissions Results

Electrical Results of the PV Microgrid projects of the Cities are easily seen in Fig. 18 and Fig. 19. Regarding Overall Grid Purchases Energy, the figure of Paris City (1447 kWh/yr) is greater than the figure of Nice City (932 kWh/yr). Meanwhile, Grid Sales Energy of Nice City (9489 kWh/yr) is larger than Grid Sales Energy of Paris City (7527 kWh/yr). In Fig. 20, the negative emissions results reflect the emissions reductions. The reductions of Nice project is greater than the Paris project.

Fig. 18 Electrical Results of PV Microgrid Project for Paris City

Fig. 19 Electrical Results of PV Microgrid Project for Nice City

	LOAD COMPONENTS	NECONACES MODELY	SYSTEM	462	Testan Design Results	LOAD COMPONENTS	EDURCE HOLES Commercia Instalante Optional	+		
Simulation Results				RESULTS	Limitation Results		_	_	_	RESULTS
Standing Mound				Total NRC:		Generic flat place PV (10 kW/10 kW	T Grid (000000 kint			Tatal NPC
System Architecture:	Generic flat plate PV (10 kW/20 kW) Generic 1kMh Li-lon (1 strings) System Converter (10 kW)	Grid (999999 kiN) Load Following		Leveland COE: Operating Cost	System Architecture	Generic 18Wh Si-Ion (1 strings) System Converter (12 WI)	Load Following			
	Generic 1kith U-lan (Listrings) System Converter (12 kiti)	Load Following	eic fat plate	Leveland COE		Generic 18Wh Gillon (Estrings)	Load Following	eric fiel pi	ute PY Grid	Operating Co
	Generic 1kith U-lan (Listrings) System Converter (12 kiti)	Load Following Generic 1kWh Li-fon Gen	eric Rat plate Value Ur	Leveland COE Operating Cost W Grid System Converter Emissions		Generic 18Wh Sillon (Esthings) System Converter (12 WV)	Load Following	veric flat pi		Operating Co
	Generic 1kith U-lan (Listrings) System Converter (12 kiti)	Load Following Generic 1kWh Li-fon Gen		Leveland COD: Openning Cost W Grid System Converter Emissions Its		Generic 18Wh Sillon (Esthings) System Converter (12 WV)	Load Following Generic LVMh Li-lon Generic LVMh Li-lon Generic LVMh Li-lon Generic G	Value -57625	Units	Leveland CO Operating Co System Conventer - Encour
	Generic 1kith U-lan (Listrings) System Converter (12 kiti)	Load Following Generic 3k/kh Li-lon Gen Quantity	Value Ur	Levelard COE Operating Cost W Grid System Converter Emissions Its //r		Generic 18Wh Sillon (Esthings) System Converter (12 WV)	Load Following Generic LWM Linion Gen Quantity Carbon Disside Carbon Nonsoide	Value -576:05 0.00	Units kg/yr kg/yr	Operating Co
	Generic 1kith U-lan (Listrings) System Converter (12 kiti)	Load Following Generic 2kWh 1J-Ion Gen Quantity Carbon Donide Carbon Monoxide Unburned Hydrocarbons	Value Ur -480.33 kg 0.00 kg 0.00 kg	Leveland COE Denning Cost W Grid System Converter Emissions in //r /r		Generic 18Wh Sillon (Esthings) System Converter (12 WV)	Load Following Generic 12Nh Li-lon Generic 12Nh Li-lon Generic 12Nh Li-lon Generic Generic Carbon Nonsolde Unburned Hydrocarbons	Value -576:05 0.00 0.00	Units kg/yr kg/yr kg/yr	Operating Co
	Generic 1kith U-lan (Listrings) System Converter (12 kiti)	Control Skills Line Gen Quantity Carbon Donide Carbon Monoxide	Value Ur -480.33 kg 0.00 kg	Leveland COE Deterning Cost M Ord System Converter Sensions In In In In In In In In In In In In In		Generic 18Wh Sillon (Esthings) System Converter (12 WV)	Load Following Generic LWM Linion Gen Quantity Carbon Disside Carbon Nonsoide	Value -576:05 0.00	Units kg/yr kg/yr	Operating Co

Fig. 20 Emissions Results: (a) Paris City; (b) Nice City

© 2016 The Authors. Journal Compilation © 2016 European Center of Sustainable Development.

3.5 Overall Comparison

Table 3 is listed for more evident comparison between the results of PV Microgrid Projects in Paris City and Nice City. The data of saving from avoiding AC-DC Conversion losses are taken from Sub-section 2.4. Nice City enriches the greater Solar Potential than Paris City. As the results, although the same costs are set, COE, NPC and Operating Cost of Nice City are cheaper than the Paris City. Moreover, due to the simulative results from HOMER Pro, Nice City has the greater figures of Renewable Fraction (%), PV Production (kWh/yr) and Capacity Factor, Net Energy Sole to Grid and Emissions Reductions than Paris City.

Description	*	Unit	City		Difference
			Paris	Nice	
Architecture	PV	kW	10	10	-
	PV-MPPT	kW	10	10	-
	Lithium-Ion Battery	kWh	1	1	-
	Converter	kW	10	10	-
	Grid	kW	999,999	999,999	-
Cost	COE	€/kWh	0.178	0.115	0.063
	NPC	€	39517	33106	6411
	Operating Cost	€	1022	675.72	346.28
	Initial Capital Cost	€	20600	20600	-
Average Solar	GHI	kWh/m ² /day	3.44	4.55	1.11
Renewable Fr	action	%	88	94	6
PV	Mean Output	kW	1.33	1.80	0.47
	Mean Output	kWh/day	31.80	43.50	11.7
	Production	kWh/yr	11608	15877	4269
	Capacity Factor	%	13.25	18.12	4.87
Converter	Inverter Mean Output	kW	0.9	1	0.1
	Rectifier Mean Output	kW	0.1	0.09	0.01
Grid	Purchases Energy	kWh/yr	1447	932	515
	Sales Energy	kWh/yr	7527	9489	1962
	Net Energy Sole	kWh/yr	6080	8557	2477
	Profit from Net Energy Sole	€/yr	806.82	1135.51	328.69
Emissions	Carbon Dioxide	kg/yr	480.33	676.05	195.72
Reductions	Sulfur Dioxide	kg/yr	0.30	0.43	0.13
from PV Microgrid	Nitrogen Dioxide	kg/yr	0.43	0.60	0.17
Emissions	Carbon Dioxide	kg/yr	71.48	71.48	-
Reductions	Sulfur Dioxide	kg/yr	0.05	0.05	-
from avoiding AC-DC Conversion	Nitrogen Dioxide	kg/yr	0.06	0.06	-
Total	Carbon Dioxide	kg/yr	551.81	747.53	195.72
Emissions	Sulfur Dioxide	kg/yr	0.35	0.48	0.13
Reductions	Nitrogen Dioxide	kg/yr	0.49	0.66	0.17

Table 3. Results Comparison Matrix

Conclusions

This research work investigates the benefits that will be gained from avoiding the AC-DC conversion losses and the impacts of different locations and Solar PV potentials on the design parameters of PV Microgrid models.

Except the inputs of the different locations and Solar potentials, the other inputs in HOMER Pro (Version 3.6.2) platform for the two Cities, Paris and Nice are the same. Then, the same architecture system and the equal initial capital cost are obtained. However, most of the other results, especially in Renewable Fraction, PV Production, Net Energy Sole to Grid and Reductions of CO_2 Emissions are predicted as the significantly greater figures for PV Microgrid models in Nice City.

According to the simulative results, it is obvious that the less Solar PV potential can cause the more costs (COE, NPC and Operating Capital). In addition, the more Ecological and Economical benefits are gained from the more blessed Solar Potential. Therefore, in general, it can be regarded as the Solar PV potential is inversely proportional with the operating costs and directly proportional with the benefits.

The innovative ideas and the evidence of this research work could be effectively instrumental for implementation of Positive and Zero-Energy Buildings in Smart Grid as well as Smart Community for Sustainable Future.

Acknowledgements

First of all, the author offers the deepest acknowledges to his father, U Sein Hla (Author, Accountant in Charge and CEC member of Myanmar Writers Association, Ret. Executive Engineer) and his mother, Daw Htway Lay for their infinite encouragements.

The author reports his respectable gratitude to U Kyaw Zwa Soe (Permanent Secretary, Director General of Department of Technology Promotion and Cooperation, Ministry of Education, Myanmar) for his kind instruction. The author also reports his respectable gratitude to U Tin Wai (Deputy Permanent Secretary, Ministry of Education, Myanmar) for his kind permission. The author is also very grateful to Dr. Myint Thein (Rector of Mandalay Technological University, Myanmar) for his kind instruction.

In addition, the author offers his deep gratitude to Dr. Srdjan Redzepagic (Professor of Economics, ISEM, UNS, France) for his kind support.

The author mentions his thanks to Prof. Dr. Cécile Belleudy (LEAT, University of Nice–Sophia Antipolis, Nice, France), Prof. Dr. Francine Diener (EMMA Coordinator, UNS, France) and Ms. Julie Guillaumat (Project Manager of EMMA, UNS, France) for their valuable supports throughout EMMA Project.

Especially, the author is deeply grateful to Prof. Dr. Jose Carlos Tiago de Oliveira (UNESCO Chair on Intangible Heritage Collaborator, EMMA WEST Coordinator, Center of Philosophy of Sciences, Department of Mathematics, University of Evora, Portugal) for sharing his invaluable experiences and impressive advices.

Moreover, the author mentions special acknowledges to Dr. Peter Lilienthal (CEO of HOMER Energy, USA) for his excellent guidance and support.

The author presents sincere appreciations to Prof. Dr. Prince G. Gadama (2nd Vice Chancellor, Board of Directors, Cypress International Institute, Texas, USA) for his kind support.

The last but not least, the author offers the heartfelt thanks to his family for their valuable encouragements.

References

- [1] <u>http://www.homerenergy.com</u>
- [2] French Environment and Energy Management Agency (ADEME), 2015. Photovoltaic Power Applications in France. National Survey Report 2014 for IEA PVPS, France.
- [3] ICSU, ISSC (2015): Review of the Targets for Sustainable Development Goals: The Science Perspective. Paris: International Council for Science (ICSU).
- [4] Ministry of Ecology, Sustainable Development and Energy, 2015. National Energy Efficiency Action Plan – 2014, Paris, France.
- [5] <u>https://en.wikipedia.org/wiki/%C3%89lectricit%C3%A9_de_France</u>
- [6] Garbesi, K. et al., 2011. Catalog of DC Appliances and Power Systems, Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720, US.
- [7] Sustainable Energy Authority of Ireland (seai), Best Practice Guide-PV, Ireland.
- [8] <u>https://en.wikipedia.org/wiki/Feed-in_tariff</u>
- [9] <u>http://solargis.info/doc/solar-and-pv-data</u>
- [10] <u>http://www.soda-pro.com</u>
- [11] <u>http://www.indexmundi.com/france/central_bank_discount_rate.html</u>
- [12] http://www.insee.fr/en/themes/series-longues.asp?indicateur=inflation
- [13] <u>http://www.lexology.com/library/detail.aspx?g=d059337e-c64a-40ab-b011-</u> <u>7ece4ec8b741</u>
- [14] <u>http://www.french-property.com/guides/france/utilities/electricity/tariff/</u>
- [15] <u>https://www.frenchentree.com/living-in-france/utilities/electricity-tariffs-in-france/</u>
- [16] <u>https://www.edf.fr/sites/default/files/contrib/content/EDF2014_IndicateursPerformance_va.pdf</u>
- [17] <u>http://www.rte-france.com/en/eco2mix/eco2mix-co2-en</u>
- [18] https://www.ipcc.ch/pdf/special-reports/sroc/Tables/t0305.pdf